电竞博彩-电子竞技博彩

电竞博彩-电子竞技博彩-->科学研究-->科研成果-->科研论文

[论文]郑宇军等人.Co-Evolutionary Fuzzy Deep Transfer Learning for Disaster Relief Demand Forecasting

时间:2022-10-09 14:09:31 文章来源 :学科 浏览量:9

Co-Evolutionary Fuzzy Deep Transfer Learning for Disaster Relief Demand Forecasting

Zheng, YJ (Zheng, Yu-Jun)  ; Yu, SL (Yu, Si-Lan) ; Song, Q (Song, Qin)  ; Huang, YJ (Huang, Yu-Jiao)  ; Sheng, WG (Sheng, Wei-Guo)  ; Chen, SY (Chen, Sheng-Yong)

 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

卷 10 期 3 页1361-1373

DOI 10.1109/TETC.2021.3085337

出版时间 JUL-SEP 2022

已索引 2022-09-09

文献类型 Article

摘要

Relief demand forecasting is vital to the success of disaster relief operations, but it is associated with challenges including insufficient training samples, incomplete and imprecise inputs, and inaccurate demands. This article presents a co-evolutionary fuzzy deep transfer learning (CoFDTL) method for relief demand forecasting where different types of disasters (e.g., earthquake, typhoon, and flood) are considered as different tasks. CoFDTL consists of three stages. First, a deep fuzzy learning model is used to learn latent representation of the shared inputs of all tasks. Second, a co-evolutionary algorithm is used to simultaneously learn task-specific features and the shared regressor. Third, the shared regressor is re-trained based on the best solutions obtained for different tasks in the second stage. Experiments demonstrate that CoFDTL exhibits significant performance improvements over the selected popular fuzzy learning, deep learning, and transfer learning models. This article also reports the application of CoFDTL to two real-world disasters in China, 2018. The proposed CoFDTL that integrates fuzzy deep learning, transfer learning, and co-evolutionary learning can be used for many other complex multi-task transfer learning problems with insufficient samples and uncertain information.